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Large Amplitude m =1 Diocotron Mode
Measurements in the Electron Diffusion Gauge

Experiment'
Thomas G. Jenkins, Kyle A. Morrison, Ronald C. Davidson, and

Stephen F. Paul

Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543

AbstracL Smaller-diameter pure electron plasmas are generated in the Electron Diffusion Gauge
(EDG) using a thoriated tungsten filament wound into a spiral shape with an outer diameter which
is 1/4 of the trap wall diameter. The m = I diocotron mode is excited in the plasma by means of
the resistive-wall instability, using a resistor-relay circuit which allows the mode to be induced at
various initial amplitudes. The dynamics of this mode may be predicted using linear theory when
the amplitude is small. However, it has been observed [e.g., Fine et al., Phys. Rev. Lett. 63, 2232
(1989)] [I] that at larger amplitudes the frequency of this mode (relative to the small-amplitude
frequency) exhibits a quadratic dependence on the mode amplitude. In this paper, the frequency
shift and nonlinear dynamics of the ni = I diocotron mode in the EDG device are investigated.

In this paper theoretical and experimental results relating to the nonlinear dynamics
of the m = I diocotron mode in the standard Malmberg-Penning trap configuration are
discussed. The experimental apparatus is first briefly described. The linear, infinite-
length theory of this mode is then summarized for reference purposes, together with
a qualitative summary of the effects of finite plasma length on the mode dynamics. The
resistive-wall instability is then discussed as a means of exciting the desired modes in the
experiment. It is shown that the observed growth rate of this instability is consistent with
theoretical predictions and past experiments. Additionally, it is shown that the instability
provides a means to excite the in = I mode to amplitudes large enough that a change in
scaling of the mode frequency shift with amplitude is observed.

EXPERIMENTAL APPARATUS

The Electron Diffusion Gauge (EDG) was constructed to study the interaction of a pure
,electron plasma with background neutral gases [2]. It follows the standard Malmberg-
Penning trap configuration, consisting of a cylindrical conducting shell subdivided axi-
ally into rings. The EDG has six rings of radius Rw = 2.54 cm; the rings vary from two
to four inches in axial length, and one of them is azimuthally subdivided into two half-
cylinders. A pure electron plasma is confined axially within the cylinder configuration
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by applying a large negative potential (typically -147 V) between two nonadjacent
rings. Radial confinement is provided by a magnetic field (B = 300 - 600 G) aligned
with the cylinder axis, and the plasma is created by thermionic emission of electrons
from a thoriated tungsten filament. Typical plasmas in EDG have central number den-
sity no 107 /cm 3 , axial line density NL t 3 x 107 /cm, length Lp ,• 15 cm, temperature
T = I - 2 eV, and column radius Rp = 0.64 - 1.27 cm.

LINEAR THEORY OF DIOCOTRON MODES

Using cylindrical coordinates, and assuming a system of infinite extent parallel to the
magnetic field B2, consider a single-species plasma within a conducting cylindrical
shell of radius R,. The linear theory of diocotron modes is developed by making the
assumption that the motion perpendicular to the magnetic field corresponds to an E x B
drift, where E is the electric field created by the plasma. Treating the plasma as an
incompressible fluid, and using the continuity and Poisson equations, gives the closed
system of equations

U=-V(D x 2 an + n=00) qn
B , V¾q n , (F)

for the three physical quantities u, n, and (0, which are, respectively, the fluid velocity,
particle number density, and electric potential. In Eq. (1) E0 is the permittivity of free
space, and q is the charge of the confined particles including the sign.

Assuming that the temporal and angular dependence of the linearized quantities varies
as exp i(mO - cot), the above equations are linearized to give the eigenvalue equation
[3, 4] for a plasma of infinite length

[w~ ~[ -mco]Iar o*, In m2'0, qm(D I no(2
[0)-mmor)rr \ r -W r2 J - CorBdr" (2)

where coo(r) - (rB)'-rDco/ar. Form= I (assumed for the remainder of this paper), Eq.
(2) admits simple solutions for the perturbed potential eigenfunction and eigenfrequency
[5] of the form

01 - r [o - 0o0(r)] , Iq- NL (3)

The mode frequency is obtained by using Gauss' Law in conjunction with the boundary
condition imposed by the conducting cylinder, namely, that 01 (R,) = 0. The quantity
NL is the axial line density (the number density per unit axial length) of the plasma.

Physically, the m = I mode may be described as a combination of two rotational
motions. The first is the equilibrium motion, i.e., the azimuthal E x B rotation of the
plasma column around its own axis. The second is the perturbed motion, wherein the
entire plasma column is displaced slightly from the z-axis, and precesses around the axis
at frequency oo.

An early theoretical treatment [6] of the effects of finite plasma length predicts that the
mode frequency oo should be shifted slightly upward, by a quantity which depends on the
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ratio of the plasma radius Rp to the trap wall radius R, More recent work [7] modifies
this hypothesis to include the dependence of the shift on the plasma temperature T and
axial number density NL. For typical EDG operating parameters, both theories predict a
frequency shift of 10 - 20%, which is consistent with observations [8].

THE RESISTIVE-WALL INSTABILITY

It can be shown that the mi = I diocotron mode is a negative-energy mode, which
grows in amplitude as energy in the plasma is dissipated. This result can be obtained
from a simple image charge calculation, modeling the plasma as a line charge with
linear charge density X = qNL. The line charge is inside and parallel to the axis of a
conducting cylinder of radius Rw., but displaced from the cylinder axis by a distance D.
The equivalent image problem replaces the conducting cylinder by another line charge
with charge density -X, displaced from the original cylinder axis by a distance R2ID
along the ray from this axis to the original charge k.

When D < Rw, consistent with linear theory, the electric field of the image charge
causes a radial force per unit length on the plasma. Integration yields the energy per unit
length when the plasma is displaced from the axis, i.e.,

F q2N2D W q2ND 20
1 27c-oR•2, I 47t•0R2,,

The relevant physics in the expression for the energy W is contained in the negative sign
and the dependence of the mode energy on D2 . Displacing the plasma from the cylinder
axis in the presence of dissipation excites the mode.

The plasma's motion induces image currents in the trap walls, which are ordinarily
grounded (except for the confining end potentials). Consequently, dissipation (and thus
an instability) may be introduced in the system by connecting a resistor R between a
section of the trap wall and ground. Assuming that such a section has axial length Ls,
and spans the azimuthal angle AO, White et al. [9] have calculated the growth rate of the
mode (which is proportional to the real part of the impedance between the trap section
and ground) as

_ 4Eo L2 20 2sAl R (5)
- L- 2 1 + -OR2C2]

where C is the inherent capacitance of this section of the trap relative to the rest of the
system, LP is the plasma length, and w is the mode frequency.

In EDG, a section of the trap wall of length L, = 5.08 cm and azimuthal span AO = 7t
is used to resistively grow the in = I diocotron mode, keeping the magnetic field and
plasma line density constant in order to maintain a constant mode frequency (0/27t
39.6 kHz (left graph) and 38.0 kHz (right graph). In each case the plasma length is
LP ; 15 cm and the wall capacitance C ; 200 nF. The data, shown in Figure 1, agrees
very well with the theoretical growth rate calculation except at high resistances. One
explanation for this effect could be that a stray path to ground with a large, but finite
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FIGURE 1. Measurements of the growth rate of the resistive-wall instability as a function of wall
resistance, plotted together with the theoretical prediction of Eq. (5) (solid line). The data on the right
was previously measured in EDG by Chao et al. [10].

resistance R, exists between the wall sector and ground. Such a path would modify the

impedance Z of this sector, such that

Re(Z) - [1 R2C] =• Re(Z) [I+RR(2I R 2C (6)

This results in a negligible change in the shape of the theoretical curve for R, > R, but
has a significant effect for R, - R. The original growth rate, for R > 1/O)C, decreases
as I /R, but the asymptotic behavior of the new growth rate in the same regime is
independent of R, i.e., it is simply a constant multiplying R,. Choosing R, = 3.86 MQ
gives the best fit (in the least-squares sense) to the recent data, as shown in Figure
2. However, further investigation on this point is needed, particularly at very large
resistances.

MODE GROWTH TO NONLINEAR AMPLITUDES

Using the resistive-wall instability as a means of exciting the m = I mode to large
amplitudes, the nonlinear effects resulting from large amplitudes can be studied. The
nonlinear problem of the dependence of the mode dynamics on mode amplitude was
first treated theoretically by Prasad and Malmberg [II], who used a perturbation theory
approach to show that for small displacements, the frequency of this mode should shift
such that (0o- co-)/o)- - (D/Rw) 2, where D is the mode amplitude (displacement of the
plasma column from the z-axis). This result was also obtained using a different model by
Fine [ 12], and was experimentally investigated by Fine et al. [ 1], who give the empirical
formula
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FIGURE 2. Measurements of the growth rate of the resistive-wall instability as a function of wall resis-
tance, plotted together with the theoretical prediction of Eq. (5) (solid line) and the modified prediction of
Eq. (6) (dashed line).

Io - R w 7 .3 ( 7 )

for the scaling of the frequency shift as a function of mode amplitude.
Experiments aimed at verifying these results in EDG were performed by Chao [13],

and the results of these experiments are shown in Figure 3. However, the radii of the
plasmas used in these experiments were approximately equal to the filament radius
R = R,/2 = 1.27 cm, and as a result, the range of off-axis displacements in which

=10
-.

10-3

10 -2 to'10 Fractional Disl acement (D/R,) 10

FIGURE 3. Data obtained by Chao [131 measuring the frequency shift (0o-ow) /ow- as a function of
relative displacement (DIR0 ), together with the prediction of Fine et al. [I] (solid line). The scatter at low
frequency shifts is due to nonideal measurement apparatus.
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FIGURE 4. Measurements of the mode frequency shift as a function of relative mode displacement
(D/R,,) for large relative displacements. Modes were excited using the relay circuit, with a resistance of
2.1 - 4.1 kf2 applied to the sectored trap wall for 0.2 seconds. Cubic (solid line) and quadratic (dashed
line) dependences are plotted for reference. It is only the slope of these lines that is physically meaningful.

experiments could be performed was limited by eventual contact of the plasma with
the trap wall. To test the scaling at large amplitudes, a smaller filament of radius
Rf = R,/4 = 0.64 cm was installed in EDG, and the resulting smaller-radius plasmas
were excited by the resistive-wall instability to large relative amplitudes. Resistances
were placed between the wall sector and ground for approximately 0.2 seconds, after
which the wall sector was shorted to ground by a relay circuit. Modes of varying initial
amplitude were obtained by changing the wall resistance, and measurements of the
plasma displacement and frequency were subsequently taken as the mode damped.

In the present experiments, we find a persistent discrepancy between our data and
the observation of Fine et al. [1] that the frequency shift scales quadratically in the rel-
ative mode amplitude. The data, shown in Figure 4, indicates that the dependence of
this shift on amplitude is cubic for displacements on the order of the plasma diameter
(D/Rw • 0.3 - 0.5). For larger displacements, the shift is proportional to successively
higher powers of the displacement (limited by contact of the plasma with the trap wall).
The behavior at high relative displacements may be consistent with the work of Fine et
al., who show that the frequency shift is an effect caused by distortion of the cylindrical
shape of the plasma (due to interaction with the image charge distribution in the cylin-
der walls). Since the relative amplitudes in the experiments of Fine et al. were small
(D/Rw < 0.25), this distortion was simply characterized by the quadrupole moment of
the plasma. For larger relative displacements, however, the distortion is probably more
complicated (thus requiring higher-order multipole moments for an accurate descrip-
tion). At low relative displacements, it is not clear why the scaling appears to be cubic
rather than quadratic. Trap asymmetries may have caused the plasma to expand radially
as the experiment progressed, which may have resulted in slight charge loss to the wall.
The plasma's subsequent relaxation to a new quasi-equilibrium as the mode damped
may have introduced physical effects which have not been considered previously.
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CONCLUSION

In this paper, we have reviewed the linear theory of the m = I diocotron mode and the
effects of finite plasma length on this theory. In addition, it has been shown that the
in = I mode can be excited to large amplitudes by the resistive-wall instability, and that
the growth rate of this instability agrees well with theoretical predictions. Finally, the
nonlinear frequency shift of this mode at large amplitudes has been measured, and a
cubic scaling of the frequency shift at large amplitudes (as opposed to the quadratic
scaling observed at lower amplitudes) has been observed.
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